

VPN Server setup with AWS, Pihole, and PiVPN

Kayvon Karimi

 July 21st, 2025

Introduction

This lab involved setting up a VPN server on Amazon Web Services (AWS) EC2, integrating
Pi-hole for ad and tracker blocking, and PiVPN with WireGuard for secure connections. The
purpose was to gain hands-on experience with cloud infrastructure, VPN protocols, and network
privacy tools. I used a Debian VM in VirtualBox as the client instead of a Windows VM,
adapting the instructions accordingly. This setup prepares for the final project by demonstrating
VPN monitoring and privacy enhancement.

Step 1: Setting Up the Environment

VirtualBox and Debian were already installed prior to building the environment. I created a free
AWS account at aws.amazon.com.

Debian VM Installed in VirtualBox

Signing up for AWS

http://aws.amazon.com

Step 2: Configuring AWS EC2 Instance

●​ Selected and launched a free tier Ubuntu Server AMI instance.
●​ created and downloaded a key pair (vpn-key.pem).
●​ converted it to .ppk for PuTTY using PuTTYgen.
●​ Configured Security Rules
●​ Connected via SSH from Windows using PuTTY.
●​ Created a Debian Client

AWS instance launch (annotated: "EC2 instance running with public IP 54.226.233.69").

PuTTYgen used to generate a public/private key pair. I selected RSA with 2048 bits, generated
the keys, and saved the private key for authentication

PuTTYgen configuration window loading the private key (converted to .ppk format) under the
“Auth” section.

Saved “PiHole Server and opened SSH

Configuring Security Group Rules

Entering SSH with login credential “ubuntu” in Putty SSH on Windows

Adding Debian Client

Step 3: Install Pi-hole and PiVPN with WireGuard

Updated the system (sudo apt update && sudo apt upgrade -y), installed lighttpd, and ran the
Pi-hole installer (curl -sSL https://install.pi-hole.net | bash), selecting defaults and lighttpd. Then

installed PiVPN (curl -L https://install.pivpn.io | bash), choosing WireGuard, endpoint
54.226.233.69, and generated a client profile (pivpn add named DebianClient).

Pi-hole installation complete (annotated: "Pi-hole admin password and IP shown")

PiVPN setup (annotated: "WireGuard selected, client generated")

Step 4: Configure Debian VM to Connect to VPN

Installed WireGuard on Debian (sudo apt install wireguard -y). Copied DebianClient.conf from
AWS, moved to /etc/wireguard/wg0.conf, added PersistentKeepalive = 25, and activated (sudo
wg-quick up wg0). Verified with sudo wg show (showed latest handshake).

Ran cat /home/ubuntu/configs/DebianClient.conf on the AWS instance to display the file
contents

 Copied the output, and pasted it into a new file on the Debian VM using nano
~/DebianClient.conf

Ran ‘sudo wg show’ and see successful connection with data transfer")

Ran ‘curl ifconfig.me’ and returned 54.226.233.69, my public IPv4 address

Browsed cnn.com in Debian and ads were blocked by Pi-hole

Analysis

The VPN setup is effective for privacy, encrypting traffic via WireGuard's efficient protocol and
routing through AWS (full tunnel). Pi-hole enhances this by blocking ads/trackers at DNS level,
reducing data collection—e.g., cnn.com loaded without ads. Challenges included missing
security group rules (UDP 51820) causing no handshake, resolved by adding rules. Learning:
VPN tunneling secures public Wi-Fi, Pi-hole saves bandwidth/privacy. Overall, a robust setup
for network security.

Challenges encountered included configuring AWS security groups for WireGuard (UDP port
51820), troubleshooting SSH key conversions for PuTTY, and ensuring the WireGuard
handshake completed for a stable connection. Learning outcomes include understanding
tunneling (full tunnel mode routes all traffic through the VPN for privacy), Pi-hole's role in
DNS-based blocking, and AWS basics like EC2 instances and key pairs.

http://ifconfig.me
http://cnn.com

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Introduction
	Step 1: Setting Up the Environment
	Step 2: Configuring AWS EC2 Instance
	Step 3: Install Pi-hole and PiVPN with WireGuard
	Step 4: Configure Debian VM to Connect to VPN
	Analysis

